L2STT Track Fitting

Topics
1. Review
2. News
3. Updated Block Diagram
4. Plans
Track Fit Card

- Receives road+hit information from trigger card
- Coordinate conversion (via lookup)
- Filters multi-hits/layer
- Perform fit to linearized circle

\[\phi(r) = b/r + \kappa r + \phi_0 \]

\((r, \phi) = \text{hit position}\)
\((b, \kappa, \phi_0) = \text{track parameters}\)

This trivially reduces to

\[
\begin{pmatrix} b \\ \kappa \\ \phi_0 \end{pmatrix} = \left(\begin{array}{ccc} \sum 1/\sigma_i^2 & \sum r_i^2/\sigma_i^2 & \sum r_i^1/\sigma_i^2 \\ \sum r_i^2/\sigma_i^2 & \sum r_i^4/\sigma_i^2 & \sum r_i^3/\sigma_i^2 \\ \sum r_i^1/\sigma_i^2 & \sum r_i^3/\sigma_i^2 & \sum r_i^2/\sigma_i^2 \end{array} \right)^{-1} \left(\begin{array}{c} \sum \phi_i r_i^1/\sigma_i^2 \\ \sum \phi_i r_i^3/\sigma_i^2 \\ \sum \phi_i r_i^2/\sigma_i^2 \end{array} \right)
\]

Done obvious things:

1/\sigma_i^2 \text{ is constant multiplier (actually two, } \sigma_{CFT} \text{ and } \sigma_{SMT})

Order to minimize operations

Running products, \(r^5 = r \times r^4\)

...
The hit multiplicity problem

Which hits do we use?

Varying Road Width: zbb_1int

Varying Road Width: zbb_3int

John Hobbs Feb. 19, 1999
Filtering algorithms, < 25μs for processing

1. **Static Road-Center**: Use hits closest to circle defined by the CTT hits and (0, 0)

2. **Dynamic Road-Center**: Use hits closest to circle defined by the CTT hits and hits in SMT layer 4 (Looping...)

3. **All Combinations**: All combinations of hits are fit. Choose best χ^2.

4. **Best Combination at Layer**: Moving from the outer SMT layer inwards the fit is performed at the current layer using the best result from performing fits on all combinations in the preceding layer.

<table>
<thead>
<tr>
<th>Fit Algorithm/Minimum Hit Layers</th>
<th>$Z \rightarrow bb$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 int.</td>
</tr>
<tr>
<td>Static Road/4</td>
<td>0.53</td>
</tr>
<tr>
<td>Static Road/3</td>
<td>0.76</td>
</tr>
<tr>
<td>Dynamic Road/4</td>
<td>0.41</td>
</tr>
<tr>
<td>All Combinations/4</td>
<td>0.65</td>
</tr>
<tr>
<td>All Combinations/3</td>
<td>0.79</td>
</tr>
<tr>
<td>Best at layer/4</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Doing χ^2(Fit-True) and rate vs. efficiency (undergrad)

" Floating point precision(JDH, Paris?)

John Hobbs

Feb. 19, 1999
Fit processors: Alpha

- Time (@500 Mhz)

<table>
<thead>
<tr>
<th>Fit Algorithm/Minimum Hit Layers</th>
<th>Z \rightarrow bb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 int. 3 int.</td>
</tr>
<tr>
<td>Static Road/4</td>
<td>3.8 4.1</td>
</tr>
<tr>
<td>Static Road/3</td>
<td>12.1 12.5</td>
</tr>
<tr>
<td>Dynamic Road/4</td>
<td>7.1 8.2</td>
</tr>
<tr>
<td>All Combinations/4</td>
<td>16.7 18.7</td>
</tr>
<tr>
<td>All Combinations/3</td>
<td>33.4 38.3</td>
</tr>
<tr>
<td>Best at layer/4</td>
<td>10.5 11.2</td>
</tr>
</tbody>
</table>

⇒ Can do 3-6 tracks/CPU

- Space, DØ standard is 1 CPU/board
- Power. DØ says OK...
- Cost. ($5k$-$6k$/CPU board)*

Cost of hypothetical system/16 tracks fit,
3 boards \times $5k$ \times 6 sectors = $90k$ + crates + misc
(MBT)

However, space for racks not there...?

*Previously, $15k$.
Fit Processors: TI320C6x DSP

- Time for algorithm static road center
 - Hal, et. al.
 - straight C code to *fixed-point* DSP (no hand optimization),

<table>
<thead>
<tr>
<th>Processor</th>
<th>Time/Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>c6201A</td>
<td>400 μs</td>
</tr>
<tr>
<td>c6201B</td>
<td>137 μs</td>
</tr>
<tr>
<td>c67(FP)</td>
<td>14 μs</td>
</tr>
</tbody>
</table>

- Space (9Ux400 mm)
 - Assume needs a square of 2x sides of package
 - 16 processors is approx *60% of board area*

- Power
 - TI literature, 2W/processor typical
 - I_{max} at 3.3V and 1.8V \Rightarrow 3W/processor
 \Rightarrow 35-50W/board in processors

- cost. x67, TI web page, $110-$240/processor, 16 processor board fits in estimated $7.5k + design costs, so $50k/16 tracks fit + design
Fit Processors: Altera 10k (New information)

- Processing time
 - Floating point “unit” at \(\approx 20 \text{ Mhz.} \) (16,6) bit (mantissa,exponent), $4k$ Integrated Silicon Solutions

 Going to (24,8) w/Altera reduces frequency by approx. 20%

 - Algorithm #1 200-250 flops, so \(\approx 12.5 \mu/\text{s road in floating point} \)

 * Precision? (certainly 8-bit exponent)

 * Uses 6-10% (?) of 10k100. Parallel execution?

- Space. as above, 240 pin package, 60% of board space

- Power. Use Altera’s formula. Assume 100 Mhz and chip 100% used gives 3W/chip. \(\Rightarrow 50W/\text{board} \)

- Cost, $170-$230/chip

Again, no obvious problem, 1 board/16 tracks fit(power)
Beginning a pseudo-implementation of algorithm #1
*VME access needed
Comments on block diagram

- Try to have converted hit→ processor on-the-fly
 - If DSP, will need RAM/FIFO at each processor
 - If Altera, arrange to avoid this?
 - Could add FIFO on input stage.
 - SRAM for conversion: 880k Channels/6 sectors x 4(granularity) x 9 bytes ⇒ < 2Mb/sector.

- Control Chip
 - Depends on STC format, especially road ID
 - Assume now, global ID (8 bits)
 - First pass at processor allocation (Altera practice)
 * 20 Mhz for 64 tracks/sector (input→register set up, no pipelining, pin assignments)
 * 40% of 10k50 logic
 * trivial 3-stage pipeline

- Copy existing VME interface? Access to:
 Processor internals, SRAM conversion table, Control Chip (diagnostics), test/record memory

- Output stage?
Track–Fitting Plans

- **Short term**
 1. Floating point precision (JDH, by Paris)
 2. Floating point performance (Wendy)
 3. Control Chip, pipeline? (JDH, Wendy)

- **By mid-summer**
 1. Number of tracks to fit
 2. Altera as processor (JDH, Wendy)
 3. Filtering algorithm (Under grad)
 4. Timing on x67 (Onur Mentes)
Global Issues and TFC

- STC transfer mechanism backplane or?
- Road/track ID. Local vs. Global
- Power distribution. Can I get 2.5V trivially?
- Canned VME interface. Where?
- Output design
- Road width and beam spot

Does the road width come from lifetime or BEAM POSN? If roads were given beam position, could they adjust fill-to-fill and be narrowed?

Personnel

John Hobbs (30%)
Wendy Taylor, Post doc (100%)
Chuck Pancake, Engineer (5% until summer, ramping up after)
Dean Schamberger, consulting
e-shop for prototyping, layout, etc