Problem XI.1

a. Show by working out the calculation in more detail, that the L_{int} (Lecture Notes #12, slide 26) works out as indicated for the couplings of the photon, W^\pm bosons, and the Z boson to the first generation leptons. Eliminate the coupling g' by the use of the Weinberg angle θ_W and coupling g.

b. Write L_{int} for the $(u,d)_L SU(2)_L$ doublet and the u_R and d_R singlets, and work out their couplings to the photon, W^\pm bosons, and the Z boson. Eliminate the coupling g' by the use of the Weinberg angle θ_W and coupling g.

c. Argue that the Fermi constant must be $g^2\sqrt{2}/8M^2$, with M the mass of the W-boson.

Hints: no hints.

Solution: no solution yet

Problem XI.2

Prove the following relations:

i. $\Gamma(W^+ \rightarrow ud)/\Gamma(W^+ \rightarrow e^+ \nu_e) = 3 \cos^2 \theta_{\text{Cabibbo}}$

ii. $\Gamma(W^+ \rightarrow us)/\Gamma(W^+ \rightarrow e^+ \nu_e) = 3 \sin^2 \theta_{\text{Cabibbo}}$

Hints: no hints

Solution: no solution yet

Problem XI.3

i. Given the values of the Fermi constant $G_F=1.16637(1)\times10^{-5} \text{ GeV}^{-2}$, the electric charge $e=1.60217653(14)\times10^{-19} \text{ C}$, and the Z-boson mass $M_Z=91.1876(21) \text{ GeV/c}^2$, calculate the values of the $U(1)_Y$ and $SU(2)_L$ couplings g and g', the W-boson mass M_W, the Weinberg angle $\sin^2 \theta_W$, and the vacuum expectation value of the Higgs field v.

ii. Compare your calculated values of M_W and the Weinberg angle $\sin^2 \theta_W$ with their experimentally determined values.

Hints: See notes; watch out for the units, e.g. for e!

Solution: no solution yet