Problem VI.1.

Show that the Mandelstam variable \(t \equiv (p_1 - p_3)^2 \), for the case that \(m_1 = m_3 \) and \(m_2 = m_4 \), can be written in the CM system exactly as \(-2p_1^*(1 - \cos(\theta^*))\), where \(|p_1^*|\) stands for the length of the three-momentum vector of \(p_1 \) in the CMS, and \(\theta^* \) is the angle between three-vectors \(p_1 \) and \(p_3 \) in the CMS.

Problem VI.2.

Show that the phase-space element \(dp/E \) is a Lorentz invariant quantity.

Problem VI.3

a) Calculate \(\frac{d\sigma}{d\Omega^*} \) and the total cross section \(\sigma_{tot} \) for electromagnetic lowest-order electromagnetic scattering of spin-0 bosons A and B (you may consider "spinless" \(e\mu \) scattering), both with charge \(+e\).

b) How does the result change for bosons that have opposite charges?

Hints: no hints
Solution: no solution yet

Problem VI.4

a) Calculate the decay width \(\frac{d\Gamma}{d\Omega^*} \) and the mean lifetime \(\tau \) for the weak decay of a spinless "muon" into spinless "electron" and two more spinless "neutrinos": \(\mu \rightarrow \nu_\mu + e^+ + \nu_e \). Assume all final state particle masses can be ignored compared to the muon mass. Assume the weak coupling constant is \(e \) as for electromagnetism, and that the weak boson propagator is \(-ig^\mu\nu/(q^2 + M_W^2) \approx -ig^\mu\nu/M_W^2\).

b) Compare to the experimental value of the muon lifetime and discuss.

Hints: no hints
Solution: no solution yet